IBM watsonx.ai

You can develop generative AI solutions with foundation models in IBM watsonx.ai. You can use prompts to generate, classify, summarize, or extract content from your input text. Choose from IBM models or open source models from Hugging Face. You can tune foundation models to customize your prompt output or optimize inferencing performance.

Supported only for IBM watsonx as a service on IBM Cloud.

Using watsonx.ai

To employ watsonx.ai LLMs, integrate the following dependency into your project:

<dependency>
    <groupId>io.quarkiverse.langchain4j</groupId>
    <artifactId>quarkus-langchain4j-watsonx</artifactId>
    <version>0.18.0.CR1</version>
</dependency>

If no other extension is installed, AI Services will automatically utilize the configured watsonx dependency.

Configuration

To use the watsonx.ai dependency, you must configure some required values in the application.properties file.

Base URL

The base-url property depends on the region of the provided service instance, use one of the following values:

quarkus.langchain4j.watsonx.base-url=https://us-south.ml.cloud.ibm.com

Project ID

To prompt foundation models in watsonx.ai programmatically, you need to pass the identifier (ID) of a project.

To get the ID of a project, complete the following steps:

  1. Open the project, and then click the Manage tab.

  2. Copy the project ID from the Details section of the General page.

To view the list of projects, go to https://dataplatform.cloud.ibm.com/projects/?context=wx.
quarkus.langchain4j.watsonx.project-id=23d...

API Key

To prompt foundation models in IBM watsonx.ai programmatically, you need an IBM Cloud API key.

quarkus.langchain4j.watsonx.api-key=hG-...
To determine the API key, go to https://cloud.ibm.com/iam/apikeys and generate it.

Writing prompts

When creating prompts using watsonx.ai, it’s important to follow the guidelines of the model you choose. Depending on the model, some special instructions may be required to ensure the desired output. For best results, always refer to the documentation provided for each model to maximize the effectiveness of your prompts.

To simplify the process of prompt creation, you can use the prompt-formatter property to automatically handle the addition of tags to your prompts. This property allows you to avoid manually adding tags by letting the system handle the formatting based on the model’s requirements. This functionality is particularly useful for models such as ibm/granite-13b-chat-v2, meta-llama/llama-3-405b-instruct, and other supported models, ensuring consistent and accurate prompt structures without additional effort.

To enable this functionality, configure the prompt-formatter property in your application.properties file as follows:

quarkus.langchain4j.watsonx.chat-model.prompt-formatter=true

When this property is set to true, the system will automatically format prompts with the appropriate tags. This helps to maintain prompt clarity and improves interaction with the LLM by ensuring that prompts follow the required structure. If set to false, you’ll need to manage the tags manually.

For example, if you choose to use ibm/granite-13b-chat-v2 without using the prompt-formatter, you will need to manually add the <|system|>, <|user|> and <|assistant|> instructions:

quarkus.langchain4j.watsonx.api-key=hG-...
quarkus.langchain4j.watsonx.base-url=https://us-south.ml.cloud.ibm.com
quarkus.langchain4j.watsonx.chat-model.model-id=ibm/granite-13b-chat-v2
quarkus.langchain4j.watsonx.chat-model.prompt-formatter=false
@RegisterAiService
public interface LLMService {

    public record Result(Integer result) {}

    @SystemMessage("""
        <|system|>
        You are a calculator and you must perform the mathematical operation
        {response_schema}
        """)
    @UserMessage("""
        <|user|>
        {firstNumber} + {secondNumber}
        <|assistant|>
        """)
    public Result calculator(int firstNumber, int secondNumber);
}

Enabling the prompt-formatter will result in:

quarkus.langchain4j.watsonx.api-key=hG-...
quarkus.langchain4j.watsonx.base-url=https://us-south.ml.cloud.ibm.com
quarkus.langchain4j.watsonx.chat-model.model-id=ibm/granite-13b-chat-v2
quarkus.langchain4j.watsonx.chat-model.prompt-formatter=true
@RegisterAiService
public interface LLMService {

    public record Result(Integer result) {}

    @SystemMessage("""
        You are a calculator and you must perform the mathematical operation
        {response_schema}
        """)
    @UserMessage("""
        {firstNumber} + {secondNumber}
        """)
    public Result calculator(int firstNumber, int secondNumber);
}

The prompt-formatter supports the following models:

  • mistralai/mistral-large

  • mistralai/mixtral-8x7b-instruct-v01

  • sdaia/allam-1-13b-instruct

  • meta-llama/llama-3-405b-instruct

  • meta-llama/llama-3-1-70b-instruct

  • meta-llama/llama-3-1-8b-instruct

  • meta-llama/llama-3-70b-instruct

  • meta-llama/llama-3-8b-instruct

  • ibm/granite-13b-chat-v2

  • ibm/granite-13b-instruct-v2

  • ibm/granite-7b-lab

  • ibm/granite-20b-code-instruct

  • ibm/granite-34b-code-instruct

  • ibm/granite-3b-code-instruct

  • ibm/granite-8b-code-instruct

Tool Execution with Prompt Formatter

In addition to simplifying prompt creation, the prompt-formatter property also enables the execution of tools for specific models. Tools allow for dynamic interactions within the model, enabling the AI to perform specific actions or fetch data as part of its response.

When the prompt-formatter is enabled and a supported model is selected, the prompt will be automatically formatted to use the tools. More information about tools is available in the Agent and Tools page.

Currently, the following model supports tool execution:

  • mistralai/mistral-large

  • meta-llama/llama-3-405b-instruct

  • meta-llama/llama-3-1-70b-instruct

The @SystemMessage and @UserMessage annotations are joined by default with a new line. If you want to change this behavior, use the property quarkus.langchain4j.watsonx.chat-model.prompt-joiner=<value>. By adjusting this property, you can define your preferred way of joining messages and ensure that the prompt structure meets your specific needs. This customization option is available only when the prompt-formatter property is set to false. When the prompt-formatter is enabled (set to true), the prompt formatting, including the addition of tags and message joining, is automatically handled. In this case, the prompt-joiner property will be ignored, and you will not have the ability to customize how messages are joined.
Sometimes it may be useful to use the quarkus.langchain4j.watsonx.chat-model.stop-sequences property to prevent the LLM model from returning more results than desired.

All configuration properties

Configuration property fixed at build time - All other configuration properties are overridable at runtime

Configuration property

Type

Default

Whether the model should be enabled.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_CHAT_MODEL_ENABLED

boolean

true

Whether the embedding model should be enabled.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_EMBEDDING_MODEL_ENABLED

boolean

true

Model id to use.

To view the complete model list, click here.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_CHAT_MODEL_MODEL_ID

string

ibm/granite-13b-chat-v2

Configuration property that enables or disables the functionality of the prompt formatter.

  • true: When enabled, prompts are automatically enriched with the specific tags defined by the model.

  • false: Prompts will not be enriched with the model’s tags.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_CHAT_MODEL_PROMPT_FORMATTER

boolean

false

Base URL of the watsonx.ai API.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_BASE_URL

string

https://dummy.ai/api

IBM Cloud API key.

To create a new API key, follow this link.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_API_KEY

string

dummy

Timeout for watsonx.ai calls.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_TIMEOUT

Duration

10s

The version date for the API of the form YYYY-MM-DD.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_VERSION

string

2024-03-14

The project that contains the watsonx.ai resource.

To look up your project id, click here.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_PROJECT_ID

string

dummy

Whether the watsonx.ai client should log requests.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_LOG_REQUESTS

boolean

false

Whether the watsonx.ai client should log responses.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_LOG_RESPONSES

boolean

false

Whether to enable the integration. Defaults to true, which means requests are made to the watsonx.ai provider. Set to false to disable all requests.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_ENABLE_INTEGRATION

boolean

true

Base URL of the IAM Authentication API.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_IAM_BASE_URL

URL

https://iam.cloud.ibm.com

Timeout for IAM authentication calls.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_IAM_TIMEOUT

Duration

10s

Grant type for the IAM Authentication API.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_IAM_GRANT_TYPE

string

urn:ibm:params:oauth:grant-type:apikey

Represents the strategy used for picking the tokens during generation of the output text. During text generation when parameter value is set to greedy, each successive token corresponds to the highest probability token given the text that has already been generated. This strategy can lead to repetitive results especially for longer output sequences. The alternative sample strategy generates text by picking subsequent tokens based on the probability distribution of possible next tokens defined by (i.e., conditioned on) the already-generated text and the top_k and top_p parameters.

Allowable values: [sample,greedy]

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_CHAT_MODEL_DECODING_METHOD

string

greedy

Represents the factor of exponential decay. Larger values correspond to more aggressive decay.

Possible values: > 1

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_CHAT_MODEL_LENGTH_PENALTY_DECAY_FACTOR

double

A number of generated tokens after which this should take effect.

Possible values: ≥ 0

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_CHAT_MODEL_LENGTH_PENALTY_START_INDEX

int

The maximum number of new tokens to be generated. The maximum supported value for this field depends on the model being used. How the "token" is defined depends on the tokenizer and vocabulary size, which in turn depends on the model. Often the tokens are a mix of full words and sub-words. Depending on the users plan, and on the model being used, there may be an enforced maximum number of new tokens.

Possible values: ≥ 0

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_CHAT_MODEL_MAX_NEW_TOKENS

int

200

If stop sequences are given, they are ignored until minimum tokens are generated.

Possible values: ≥ 0

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_CHAT_MODEL_MIN_NEW_TOKENS

int

0

Random number generator seed to use in sampling mode for experimental repeatability.

Possible values: ≥ 1

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_CHAT_MODEL_RANDOM_SEED

int

Stop sequences are one or more strings which will cause the text generation to stop if/when they are produced as part of the output. Stop sequences encountered prior to the minimum number of tokens being generated will be ignored.

Possible values: 0 ≤ number of items ≤ 6, contains only unique items

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_CHAT_MODEL_STOP_SEQUENCES

list of string

A value used to modify the next-token probabilities in sampling mode. Values less than 1.0 sharpen the probability distribution, resulting in "less random" output. Values greater than 1.0 flatten the probability distribution, resulting in "more random" output. A value of 1.0 has no effect.

Possible values: 0 ≤ value ≤ 2

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_CHAT_MODEL_TEMPERATURE

double

1.0

The number of highest probability vocabulary tokens to keep for top-k-filtering. Only applies for sampling mode. When decoding_strategy is set to sample, only the top_k most likely tokens are considered as candidates for the next generated token.

Possible values: 1 ≤ value ≤ 100

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_CHAT_MODEL_TOP_K

int

Similar to top_k except the candidates to generate the next token are the most likely tokens with probabilities that add up to at least top_p. Also known as nucleus sampling. A value of 1.0 is equivalent to disabled.

Possible values: 0 < value ≤ 1

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_CHAT_MODEL_TOP_P

double

Represents the penalty for penalizing tokens that have already been generated or belong to the context. The value 1.0 means that there is no penalty.

Possible values: 1 ≤ value ≤ 2

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_CHAT_MODEL_REPETITION_PENALTY

double

Represents the maximum number of input tokens accepted. This can be used to avoid requests failing due to input being longer than configured limits. If the text is truncated, then it truncates the start of the input (on the left), so the end of the input will remain the same. If this value exceeds the maximum sequence length (refer to the documentation to find this value for the model) then the call will fail if the total number of tokens exceeds the maximum sequence length. Zero means don’t truncate.

Possible values: ≥ 0

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_CHAT_MODEL_TRUNCATE_INPUT_TOKENS

int

Pass false to omit matched stop sequences from the end of the output text. The default is true, meaning that the output will end with the stop sequence text when matched.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_CHAT_MODEL_INCLUDE_STOP_SEQUENCE

boolean

Whether chat model requests should be logged.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_CHAT_MODEL_LOG_REQUESTS

boolean

false

Whether chat model responses should be logged.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_CHAT_MODEL_LOG_RESPONSES

boolean

false

Delimiter used to concatenate the ChatMessage elements into a single string. By setting this property, you can define your preferred way of concatenating messages to ensure that the prompt is structured in the correct way.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_CHAT_MODEL_PROMPT_JOINER

string

` `

Model id to use. To view the complete model list, click here.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_EMBEDDING_MODEL_MODEL_ID

string

ibm/slate-125m-english-rtrvr

Whether embedding model requests should be logged.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_EMBEDDING_MODEL_LOG_REQUESTS

boolean

false

Whether embedding model responses should be logged.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX_EMBEDDING_MODEL_LOG_RESPONSES

boolean

false

Named model config

Type

Default

Model id to use.

To view the complete model list, click here.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__CHAT_MODEL_MODEL_ID

string

ibm/granite-13b-chat-v2

Configuration property that enables or disables the functionality of the prompt formatter.

  • true: When enabled, prompts are automatically enriched with the specific tags defined by the model.

  • false: Prompts will not be enriched with the model’s tags.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__CHAT_MODEL_PROMPT_FORMATTER

boolean

false

Base URL of the watsonx.ai API.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__BASE_URL

string

https://dummy.ai/api

IBM Cloud API key.

To create a new API key, follow this link.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__API_KEY

string

dummy

Timeout for watsonx.ai calls.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__TIMEOUT

Duration

10s

The version date for the API of the form YYYY-MM-DD.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__VERSION

string

2024-03-14

The project that contains the watsonx.ai resource.

To look up your project id, click here.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__PROJECT_ID

string

dummy

Whether the watsonx.ai client should log requests.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__LOG_REQUESTS

boolean

false

Whether the watsonx.ai client should log responses.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__LOG_RESPONSES

boolean

false

Whether to enable the integration. Defaults to true, which means requests are made to the watsonx.ai provider. Set to false to disable all requests.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__ENABLE_INTEGRATION

boolean

true

Base URL of the IAM Authentication API.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__IAM_BASE_URL

URL

https://iam.cloud.ibm.com

Timeout for IAM authentication calls.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__IAM_TIMEOUT

Duration

10s

Grant type for the IAM Authentication API.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__IAM_GRANT_TYPE

string

urn:ibm:params:oauth:grant-type:apikey

Represents the strategy used for picking the tokens during generation of the output text. During text generation when parameter value is set to greedy, each successive token corresponds to the highest probability token given the text that has already been generated. This strategy can lead to repetitive results especially for longer output sequences. The alternative sample strategy generates text by picking subsequent tokens based on the probability distribution of possible next tokens defined by (i.e., conditioned on) the already-generated text and the top_k and top_p parameters.

Allowable values: [sample,greedy]

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__CHAT_MODEL_DECODING_METHOD

string

greedy

Represents the factor of exponential decay. Larger values correspond to more aggressive decay.

Possible values: > 1

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__CHAT_MODEL_LENGTH_PENALTY_DECAY_FACTOR

double

A number of generated tokens after which this should take effect.

Possible values: ≥ 0

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__CHAT_MODEL_LENGTH_PENALTY_START_INDEX

int

The maximum number of new tokens to be generated. The maximum supported value for this field depends on the model being used. How the "token" is defined depends on the tokenizer and vocabulary size, which in turn depends on the model. Often the tokens are a mix of full words and sub-words. Depending on the users plan, and on the model being used, there may be an enforced maximum number of new tokens.

Possible values: ≥ 0

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__CHAT_MODEL_MAX_NEW_TOKENS

int

200

If stop sequences are given, they are ignored until minimum tokens are generated.

Possible values: ≥ 0

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__CHAT_MODEL_MIN_NEW_TOKENS

int

0

Random number generator seed to use in sampling mode for experimental repeatability.

Possible values: ≥ 1

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__CHAT_MODEL_RANDOM_SEED

int

Stop sequences are one or more strings which will cause the text generation to stop if/when they are produced as part of the output. Stop sequences encountered prior to the minimum number of tokens being generated will be ignored.

Possible values: 0 ≤ number of items ≤ 6, contains only unique items

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__CHAT_MODEL_STOP_SEQUENCES

list of string

A value used to modify the next-token probabilities in sampling mode. Values less than 1.0 sharpen the probability distribution, resulting in "less random" output. Values greater than 1.0 flatten the probability distribution, resulting in "more random" output. A value of 1.0 has no effect.

Possible values: 0 ≤ value ≤ 2

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__CHAT_MODEL_TEMPERATURE

double

1.0

The number of highest probability vocabulary tokens to keep for top-k-filtering. Only applies for sampling mode. When decoding_strategy is set to sample, only the top_k most likely tokens are considered as candidates for the next generated token.

Possible values: 1 ≤ value ≤ 100

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__CHAT_MODEL_TOP_K

int

Similar to top_k except the candidates to generate the next token are the most likely tokens with probabilities that add up to at least top_p. Also known as nucleus sampling. A value of 1.0 is equivalent to disabled.

Possible values: 0 < value ≤ 1

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__CHAT_MODEL_TOP_P

double

Represents the penalty for penalizing tokens that have already been generated or belong to the context. The value 1.0 means that there is no penalty.

Possible values: 1 ≤ value ≤ 2

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__CHAT_MODEL_REPETITION_PENALTY

double

Represents the maximum number of input tokens accepted. This can be used to avoid requests failing due to input being longer than configured limits. If the text is truncated, then it truncates the start of the input (on the left), so the end of the input will remain the same. If this value exceeds the maximum sequence length (refer to the documentation to find this value for the model) then the call will fail if the total number of tokens exceeds the maximum sequence length. Zero means don’t truncate.

Possible values: ≥ 0

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__CHAT_MODEL_TRUNCATE_INPUT_TOKENS

int

Pass false to omit matched stop sequences from the end of the output text. The default is true, meaning that the output will end with the stop sequence text when matched.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__CHAT_MODEL_INCLUDE_STOP_SEQUENCE

boolean

Whether chat model requests should be logged.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__CHAT_MODEL_LOG_REQUESTS

boolean

false

Whether chat model responses should be logged.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__CHAT_MODEL_LOG_RESPONSES

boolean

false

Delimiter used to concatenate the ChatMessage elements into a single string. By setting this property, you can define your preferred way of concatenating messages to ensure that the prompt is structured in the correct way.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__CHAT_MODEL_PROMPT_JOINER

string

` `

Model id to use. To view the complete model list, click here.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__EMBEDDING_MODEL_MODEL_ID

string

ibm/slate-125m-english-rtrvr

Whether embedding model requests should be logged.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__EMBEDDING_MODEL_LOG_REQUESTS

boolean

false

Whether embedding model responses should be logged.

Environment variable: QUARKUS_LANGCHAIN4J_WATSONX__MODEL_NAME__EMBEDDING_MODEL_LOG_RESPONSES

boolean

false

About the Duration format

To write duration values, use the standard java.time.Duration format. See the Duration#parse() Java API documentation for more information.

You can also use a simplified format, starting with a number:

  • If the value is only a number, it represents time in seconds.

  • If the value is a number followed by ms, it represents time in milliseconds.

In other cases, the simplified format is translated to the java.time.Duration format for parsing:

  • If the value is a number followed by h, m, or s, it is prefixed with PT.

  • If the value is a number followed by d, it is prefixed with P.