Amazon SQS Client

Amazon Simple Queue Service (SQS) is a fully managed message queuing service. Using SQS, you can send, store, and receive messages between software components at any volume, without losing messages or requiring other services to be available. SQS offers two types of message queues. Standard queues offer maximum throughput, best-effort ordering and at-least-once delivery. SQS FIFO queues are designed to guarantee that messages are processes exactly once, on the exact order that they were sent.

You can find more information about SQS at the Amazon SQS website.

The SQS extension is based on AWS Java SDK 2.x. It’s a major rewrite of the 1.x code base that offers two programming models (Blocking & Async).

The Quarkus extension supports two programming models:

  • Blocking access using URL Connection HTTP client (by default) or the Apache HTTP Client

  • Asynchronous programming based on JDK’s CompletableFuture objects and the Netty HTTP client.

In this guide, we see how you can get your REST services to use SQS locally and on AWS.

Prerequisites

To complete this guide, you need:

  • JDK 11+ installed with JAVA_HOME configured appropriately

  • an IDE

  • Apache Maven 3.8.1+

  • An AWS Account to access the SQS service

  • Docker for your system to run SQS locally for testing purposes

Provision SQS locally via Dev Services

The easiest way to start working with SQS is to run a local instance using Dev Services.

You can optionally configure the queues that are created on startup with the quarkus.sqs.devservices.queues config property.

Provision SQS locally manually

You can also set up a local version of SQS manually, first start a LocalStack container:

docker run --rm --name local-sqs -p 4566:4576 -e SERVICES=sqs -e START_WEB=0 -d localstack/localstack:1.0.3

This starts a SQS instance that is accessible on port 4566.

Create an AWS profile for your local instance using AWS CLI:

$ aws configure --profile localstack
AWS Access Key ID [None]: test-key
AWS Secret Access Key [None]: test-secret
Default region name [None]: us-east-1
Default output format [None]: text

Create a SQS queue

Create a SQS queue using AWS CLI and store in QUEUE_URL environment variable.

QUEUE_URL=`aws sqs create-queue --queue-name=ColliderQueue --profile localstack --endpoint-url=http://localhost:4566`

Or, if you want to use your SQS queue on your AWS account create a queue using your default profile

QUEUE_URL=`aws sqs create-queue --queue-name=ColliderQueue`

Solution

The application built here allows shooting an elementary particles (quarks) into a ColliderQueue queue of the AWS SQS. Additionally, we create a resource that allows receiving those quarks from the ColliderQueue queue in the order they were sent.

We recommend that you follow the instructions in the next sections and create the application step by step. However, you can go right to the completed example.

Clone the Git repository: git clone https://github.com/quarkusio/quarkus-quickstarts.git, or download an archive.

The solution is located in the amazon-sqs-quickstart directory.

Creating the Maven project

First, we need a new project. Create a new project with the following command:

mvn io.quarkus.platform:quarkus-maven-plugin:2.16.9.Final:create \
    -DprojectGroupId=org.acme \
    -DprojectArtifactId=amazon-sqs-quickstart \
    -DclassName="org.acme.sqs.QuarksCannonSyncResource" \
    -Dpath="/sync-cannon" \
    -Dextensions="resteasy-reactive-jackson,amazon-sqs"
cd amazon-sqs-quickstart

This command generates a Maven structure importing the RESTEasy Reactive and Amazon SQS Client extensions. After this, the amazon-sqs extension has been added to your pom.xml as well as the Mutiny support for RESTEasy.

Creating JSON REST service

In this example, we will create an application that sends quarks via the queue. The example application will demonstrate the two programming models supported by the extension.

First, let’s create the Quark bean as follows:

package org.acme.sqs.model;

import io.quarkus.runtime.annotations.RegisterForReflection;
import java.util.Objects;

@RegisterForReflection
public class Quark {

    private String flavor;
    private String spin;

    public Quark() {
    }

    public String getFlavor() {
        return flavor;
    }

    public void setFlavor(String flavor) {
        this.flavor = flavor;
    }

    public String getSpin() {
        return spin;
    }

    public void setSpin(String spin) {
        this.spin = spin;
    }

    @Override
    public boolean equals(Object obj) {
        if (!(obj instanceof Quark)) {
            return false;
        }

        Quark other = (Quark) obj;

        return Objects.equals(other.flavor, this.flavor);
    }

    @Override
    public int hashCode() {
        return Objects.hash(this.flavor);
    }
}

Then, create a org.acme.sqs.QuarksCannonSyncResource that will provide an API to shoot quarks into the SQS queue using the synchronous client.

The @RegisterForReflection annotation instructs Quarkus to keep the class and its members during the native compilation. More details about the @RegisterForReflection annotation can be found on the native application tips page.
package org.acme.sqs;

import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.ObjectWriter;
import javax.inject.Inject;
import javax.ws.rs.Consumes;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;
import org.acme.sqs.model.Quark;
import org.eclipse.microprofile.config.inject.ConfigProperty;
import org.jboss.logging.Logger;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.SendMessageResponse;

@Path("/sync/cannon")
@Produces(MediaType.TEXT_PLAIN)
public class QuarksCannonSyncResource {

    private static final Logger LOGGER = Logger.getLogger(QuarksCannonSyncResource.class);

    @Inject
    SqsClient sqs;

    @ConfigProperty(name = "queue.url")
    String queueUrl;

    static ObjectWriter QUARK_WRITER = new ObjectMapper().writerFor(Quark.class);

    @POST
    @Path("/shoot")
    @Consumes(MediaType.APPLICATION_JSON)
    public Response sendMessage(Quark quark) throws Exception {
        String message = QUARK_WRITER.writeValueAsString(quark);
        SendMessageResponse response = sqs.sendMessage(m -> m.queueUrl(queueUrl).messageBody(message));
        LOGGER.infov("Fired Quark[{0}, {1}}]", quark.getFlavor(), quark.getSpin());
        return Response.ok().entity(response.messageId()).build();
    }
}

Because of the fact messages sent to the queue must be a String, we’re using Jackson’s ObjectWriter in order to serialize our Quark objects into a String.

Now, create the org.acme.QuarksShieldSyncResource REST resources that provides an endpoint to read the messages from the ColliderQueue queue.

package org.acme.sqs;

import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.ObjectReader;
import java.util.List;
import java.util.stream.Collectors;
import javax.inject.Inject;
import javax.ws.rs.Consumes;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;
import org.acme.sqs.model.Quark;
import org.eclipse.microprofile.config.inject.ConfigProperty;
import org.jboss.logging.Logger;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.Message;

@Path("/sync/shield")
public class QuarksShieldSyncResource {

    private static final Logger LOGGER = Logger.getLogger(QuarksShieldSyncResource.class);

    @Inject
    SqsClient sqs;

    @ConfigProperty(name = "queue.url")
    String queueUrl;

    static ObjectReader QUARK_READER = new ObjectMapper().readerFor(Quark.class);

    @GET
    public List<Quark> receive() {
        List<Message> messages = sqs.receiveMessage(m -> m.maxNumberOfMessages(10).queueUrl(queueUrl)).messages();

        return messages.stream()
            .map(Message::body)
            .map(this::toQuark)
            .collect(Collectors.toList());
    }

    private Quark toQuark(String message) {
        Quark quark = null;
        try {
            quark = QUARK_READER.readValue(message);
        } catch (Exception e) {
            LOGGER.error("Error decoding message", e);
            throw new RuntimeException(e);
        }
        return quark;
    }
}

We are using here a Jackson’s ObjectReader in order to deserialize queue messages into our Quark POJOs.

Configuring SQS clients

Both SQS clients (sync and async) are configurable via the application.properties file that can be provided in the src/main/resources directory. Additionally, you need to add to the classpath a proper implementation of the sync client. By default the extension uses the URL connection HTTP client, so you need to add a URL connection client dependency to the pom.xml file:

<dependency>
    <groupId>software.amazon.awssdk</groupId>
    <artifactId>url-connection-client</artifactId>
</dependency>

If you want to use Apache HTTP client instead, configure it as follows:

quarkus.sqs.sync-client.type=apache

And add the following dependency to the application pom.xml:

<dependency>
    <groupId>software.amazon.awssdk</groupId>
    <artifactId>apache-client</artifactId>
</dependency>

If you’re going to use a local SQS instance, configure it as follows:

quarkus.sqs.endpoint-override=http://localhost:4566

quarkus.sqs.aws.region=us-east-1
quarkus.sqs.aws.credentials.type=static
quarkus.sqs.aws.credentials.static-provider.access-key-id=test-key
quarkus.sqs.aws.credentials.static-provider.secret-access-key=test-secret
  • quarkus.sqs.aws.region - It’s required by the client, but since you’re using a local SQS instance use us-east-1 as it’s a default region of LocalStack’s SQS.

  • quarkus.sqs.aws.credentials.type - Set static credentials provider with any values for access-key-id and secret-access-key

  • quarkus.sqs.endpoint-override - Override the SQS client to use a local instance instead of an AWS service

If you want to work with an AWS account, you can simply remove or comment out all SQS related properties. By default, the SQS client extension will use the default credentials provider chain that looks for credentials in this order:

  • Java System Properties - aws.accessKeyId and aws.secretAccessKey

  • Environment Variables - AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY

  • Credential profiles file at the default location (~/.aws/credentials) shared by all AWS SDKs and the AWS CLI

  • Credentials delivered through the Amazon ECS if the AWS_CONTAINER_CREDENTIALS_RELATIVE_URI environment variable is set and the security manager has permission to access the variable,

  • Instance profile credentials delivered through the Amazon EC2 metadata service

And the region from your AWS CLI profile will be used.

Next steps

Packaging

Packaging your application is as simple as ./mvnw clean package. It can be run with java -Dqueue.url=$QUEUE_URL -jar target/quarkus-app/quarkus-run.jar.

With GraalVM installed, you can also create a native executable binary: ./mvnw clean package -Dnative. Depending on your system, that will take some time.

Going asynchronous

Thanks to the AWS SDK v2.x used by the Quarkus extension, you can use the asynchronous programming model out of the box.

Create a org.acme.sqs.QuarksCannonAsyncResource REST resource that will be similar to our QuarksCannonSyncResource but using an asynchronous programming model.

package org.acme.sqs;

import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.ObjectWriter;
import io.smallrye.mutiny.Uni;
import javax.inject.Inject;
import javax.ws.rs.Consumes;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;
import org.acme.sqs.model.Quark;
import org.eclipse.microprofile.config.inject.ConfigProperty;
import org.jboss.logging.Logger;
import software.amazon.awssdk.services.sqs.SqsAsyncClient;
import software.amazon.awssdk.services.sqs.model.SendMessageResponse;

@Path("/async/cannon")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public class QuarksCannonAsyncResource {

    private static final Logger LOGGER = Logger.getLogger(QuarksCannonAsyncResource.class);

    @Inject
    SqsAsyncClient sqs;

    @ConfigProperty(name = "queue.url")
    String queueUrl;

    static ObjectWriter QUARK_WRITER = new ObjectMapper().writerFor(Quark.class);

    @POST
    @Path("/shoot")
    @Consumes(MediaType.APPLICATION_JSON)
    public Uni<Response> sendMessage(Quark quark) throws Exception {
        String message = QUARK_WRITER.writeValueAsString(quark);
        return Uni.createFrom()
            .completionStage(sqs.sendMessage(m -> m.queueUrl(queueUrl).messageBody(message)))
            .onItem().invoke(item -> LOGGER.infov("Fired Quark[{0}, {1}}]", quark.getFlavor(), quark.getSpin()))
            .onItem().transform(SendMessageResponse::messageId)
            .onItem().transform(id -> Response.ok().entity(id).build());
    }
}

We create Uni instances from the CompletionStage objects returned by the asynchronous SQS client, and then transform the emitted item.

And the corresponding async receiver of the queue messages org.acme.sqs.QuarksShieldAsyncResource

package org.acme.sqs;

import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.ObjectReader;
import io.smallrye.mutiny.Uni;
import java.util.List;
import java.util.stream.Collectors;
import javax.inject.Inject;
import javax.ws.rs.Consumes;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;
import org.acme.sqs.model.Quark;
import org.eclipse.microprofile.config.inject.ConfigProperty;
import org.jboss.logging.Logger;
import software.amazon.awssdk.services.sqs.SqsAsyncClient;
import software.amazon.awssdk.services.sqs.model.Message;
import software.amazon.awssdk.services.sqs.model.ReceiveMessageResponse;

@Path("/async/shield")
public class QuarksShieldAsyncResource {

    private static final Logger LOGGER = Logger.getLogger(QuarksShieldAsyncResource.class);

    @Inject
    SqsAsyncClient sqs;

    @ConfigProperty(name = "queue.url")
    String queueUrl;

    static ObjectReader QUARK_READER = new ObjectMapper().readerFor(Quark.class);

    @GET
    public Uni<List<Quark>> receive() {
        return Uni.createFrom()
            .completionStage(sqs.receiveMessage(m -> m.maxNumberOfMessages(10).queueUrl(queueUrl)))
            .onItem().transform(ReceiveMessageResponse::messages)
            .onItem().transform(m -> m.stream().map(Message::body).map(this::toQuark).collect(Collectors.toList()));
    }

    private Quark toQuark(String message) {
        Quark quark = null;
        try {
            quark = QUARK_READER.readValue(message);
        } catch (Exception e) {
            LOGGER.error("Error decoding message", e);
            throw new RuntimeException(e);
        }
        return quark;
    }
}

And we need to add the Netty HTTP client dependency to the pom.xml:

<dependency>
    <groupId>software.amazon.awssdk</groupId>
    <artifactId>netty-nio-client</artifactId>
</dependency>

Configuration Reference

Configuration property fixed at build time - All other configuration properties are overridable at runtime

Configuration property

Type

Default

List of execution interceptors that will have access to read and modify the request and response objects as they are processed by the AWS SDK. The list should consists of class names which implements software.amazon.awssdk.core.interceptor.ExecutionInterceptor interface.

Environment variable: QUARKUS_SQS_INTERCEPTORS

list of string

Type of the sync HTTP client implementation

Environment variable: QUARKUS_SQS_SYNC_CLIENT_TYPE

url, apache

url

If a local AWS stack should be used. (default to true) If this is true and endpoint-override is not configured then a local AWS stack will be started and will be used instead of the given configuration. For all services but Cognito, the local AWS stack will be provided by LocalStack. Otherwise, it will be provided by Moto

Environment variable: QUARKUS_SQS_DEVSERVICES_ENABLED

boolean

Indicates if the LocalStack container managed by Dev Services is shared. When shared, Quarkus looks for running containers using label-based service discovery. If a matching container is found, it is used, and so a second one is not started. Otherwise, Dev Services starts a new container. The discovery uses the quarkus-dev-service-localstack label. The value is configured using the service-name property. Sharing is not supported for the Cognito extension.

Environment variable: QUARKUS_SQS_DEVSERVICES_SHARED

boolean

false

The value of the quarkus-dev-service-localstack label attached to the started container. In dev mode, when shared is set to true, before starting a container, Dev Services looks for a container with the quarkus-dev-service-localstack label set to the configured value. If found, it will use this container instead of starting a new one. Otherwise it starts a new container with the quarkus-dev-service-localstack label set to the specified value. In test mode, Dev Services will group services with the same service-name value in one container instance. This property is used when you need multiple shared LocalStack instances.

Environment variable: QUARKUS_SQS_DEVSERVICES_SERVICE_NAME

string

localstack

The queues to create on startup.

Environment variable: QUARKUS_SQS_DEVSERVICES_QUEUES

list of string

Generic properties that are pass for additional container configuration.

Environment variable: QUARKUS_SQS_DEVSERVICES_CONTAINER_PROPERTIES

Map<String,String>

AWS SDK client configurations

Type

Default

The endpoint URI with which the SDK should communicate. If not specified, an appropriate endpoint to be used for the given service and region.

Environment variable: QUARKUS_SQS_ENDPOINT_OVERRIDE

URI

The amount of time to allow the client to complete the execution of an API call. This timeout covers the entire client execution except for marshalling. This includes request handler execution, all HTTP requests including retries, unmarshalling, etc. This value should always be positive, if present.

Environment variable: QUARKUS_SQS_API_CALL_TIMEOUT

Duration

The amount of time to wait for the HTTP request to complete before giving up and timing out. This value should always be positive, if present.

Environment variable: QUARKUS_SQS_API_CALL_ATTEMPT_TIMEOUT

Duration

AWS services configurations

Type

Default

An Amazon Web Services region that hosts the given service.

It overrides region provider chain with static value of region with which the service client should communicate.

If not set, region is retrieved via the default providers chain in the following order:

  • aws.region system property

  • region property from the profile file

  • Instance profile file

See software.amazon.awssdk.regions.Region for available regions.

Environment variable: QUARKUS_SQS_AWS_REGION

Region

Configure the credentials provider that should be used to authenticate with AWS.

Available values:

  • default - the provider will attempt to identify the credentials automatically using the following checks:

    • Java System Properties - aws.accessKeyId and aws.secretAccessKey

    • Environment Variables - AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY

    • Credential profiles file at the default location (~/.aws/credentials) shared by all AWS SDKs and the AWS CLI

    • Credentials delivered through the Amazon EC2 container service if AWS_CONTAINER_CREDENTIALS_RELATIVE_URI environment variable is set and security manager has permission to access the variable.

    • Instance profile credentials delivered through the Amazon EC2 metadata service

  • static - the provider that uses the access key and secret access key specified in the static-provider section of the config.

  • system-property - it loads credentials from the aws.accessKeyId, aws.secretAccessKey and aws.sessionToken system properties.

  • env-variable - it loads credentials from the AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY and AWS_SESSION_TOKEN environment variables.

  • profile - credentials are based on AWS configuration profiles. This loads credentials from a profile file, allowing you to share multiple sets of AWS security credentials between different tools like the AWS SDK for Java and the AWS CLI.

  • container - It loads credentials from a local metadata service. Containers currently supported by the AWS SDK are Amazon Elastic Container Service (ECS) and AWS Greengrass

  • instance-profile - It loads credentials from the Amazon EC2 Instance Metadata Service.

  • process - Credentials are loaded from an external process. This is used to support the credential_process setting in the profile credentials file. See Sourcing Credentials From External Processes for more information.

  • anonymous - It always returns anonymous AWS credentials. Anonymous AWS credentials result in un-authenticated requests and will fail unless the resource or API’s policy has been configured to specifically allow anonymous access.

Environment variable: QUARKUS_SQS_AWS_CREDENTIALS_TYPE

default, static, system-property, env-variable, profile, container, instance-profile, process, custom, anonymous

default

Default credentials provider configuration

Type

Default

Whether this provider should fetch credentials asynchronously in the background. If this is true, threads are less likely to block, but additional resources are used to maintain the provider.

Environment variable: QUARKUS_SQS_AWS_CREDENTIALS_DEFAULT_PROVIDER_ASYNC_CREDENTIAL_UPDATE_ENABLED

boolean

false

Whether the provider should reuse the last successful credentials provider in the chain. Reusing the last successful credentials provider will typically return credentials faster than searching through the chain.

Environment variable: QUARKUS_SQS_AWS_CREDENTIALS_DEFAULT_PROVIDER_REUSE_LAST_PROVIDER_ENABLED

boolean

true

Static credentials provider configuration

Type

Default

AWS Access key id

Environment variable: QUARKUS_SQS_AWS_CREDENTIALS_STATIC_PROVIDER_ACCESS_KEY_ID

string

AWS Secret access key

Environment variable: QUARKUS_SQS_AWS_CREDENTIALS_STATIC_PROVIDER_SECRET_ACCESS_KEY

string

AWS Session token

Environment variable: QUARKUS_SQS_AWS_CREDENTIALS_STATIC_PROVIDER_SESSION_TOKEN

string

AWS Profile credentials provider configuration

Type

Default

The name of the profile that should be used by this credentials provider. If not specified, the value in AWS_PROFILE environment variable or aws.profile system property is used and defaults to default name.

Environment variable: QUARKUS_SQS_AWS_CREDENTIALS_PROFILE_PROVIDER_PROFILE_NAME

string

Process credentials provider configuration

Type

Default

Whether the provider should fetch credentials asynchronously in the background. If this is true, threads are less likely to block when credentials are loaded, but additional resources are used to maintain the provider.

Environment variable: QUARKUS_SQS_AWS_CREDENTIALS_PROCESS_PROVIDER_ASYNC_CREDENTIAL_UPDATE_ENABLED

boolean

false

The amount of time between when the credentials expire and when the credentials should start to be refreshed. This allows the credentials to be refreshed *before* they are reported to expire.

Environment variable: QUARKUS_SQS_AWS_CREDENTIALS_PROCESS_PROVIDER_CREDENTIAL_REFRESH_THRESHOLD

Duration

15S

The maximum size of the output that can be returned by the external process before an exception is raised.

Environment variable: QUARKUS_SQS_AWS_CREDENTIALS_PROCESS_PROVIDER_PROCESS_OUTPUT_LIMIT

MemorySize

1024

The command that should be executed to retrieve credentials.

Environment variable: QUARKUS_SQS_AWS_CREDENTIALS_PROCESS_PROVIDER_COMMAND

string

Custom credentials provider configuration

Type

Default

The name of custom AwsCredentialsProvider bean.

Environment variable: QUARKUS_SQS_AWS_CREDENTIALS_CUSTOM_PROVIDER_NAME

string

Sync HTTP transport configurations

Type

Default

The maximum amount of time to establish a connection before timing out.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_CONNECTION_TIMEOUT

Duration

2S

The amount of time to wait for data to be transferred over an established, open connection before the connection is timed out.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_SOCKET_TIMEOUT

Duration

30S

TLS key managers provider type.

Available providers:

  • none - Use this provider if you don’t want the client to present any certificates to the remote TLS host.

  • system-property - Provider checks the standard javax.net.ssl.keyStore, javax.net.ssl.keyStorePassword, and javax.net.ssl.keyStoreType properties defined by the JSSE.

  • file-store - Provider that loads the key store from a file.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_TLS_KEY_MANAGERS_PROVIDER_TYPE

none, system-property, file-store

system-property

Path to the key store.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_TLS_KEY_MANAGERS_PROVIDER_FILE_STORE_PATH

path

Key store type. See the KeyStore section in the https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#KeyStore[Java Cryptography Architecture Standard Algorithm Name Documentation] for information about standard keystore types.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_TLS_KEY_MANAGERS_PROVIDER_FILE_STORE_TYPE

string

Key store password

Environment variable: QUARKUS_SQS_SYNC_CLIENT_TLS_KEY_MANAGERS_PROVIDER_FILE_STORE_PASSWORD

string

TLS trust managers provider type.

Available providers:

  • trust-all - Use this provider to disable the validation of servers certificates and therefore trust all server certificates.

  • system-property - Provider checks the standard javax.net.ssl.keyStore, javax.net.ssl.keyStorePassword, and javax.net.ssl.keyStoreType properties defined by the JSSE.

  • file-store - Provider that loads the key store from a file.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_TLS_TRUST_MANAGERS_PROVIDER_TYPE

trust-all, system-property, file-store

system-property

Path to the key store.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_TLS_TRUST_MANAGERS_PROVIDER_FILE_STORE_PATH

path

Key store type. See the KeyStore section in the https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#KeyStore[Java Cryptography Architecture Standard Algorithm Name Documentation] for information about standard keystore types.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_TLS_TRUST_MANAGERS_PROVIDER_FILE_STORE_TYPE

string

Key store password

Environment variable: QUARKUS_SQS_SYNC_CLIENT_TLS_TRUST_MANAGERS_PROVIDER_FILE_STORE_PASSWORD

string

Apache HTTP client specific configurations

Type

Default

The amount of time to wait when acquiring a connection from the pool before giving up and timing out.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_APACHE_CONNECTION_ACQUISITION_TIMEOUT

Duration

10S

The maximum amount of time that a connection should be allowed to remain open while idle.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_APACHE_CONNECTION_MAX_IDLE_TIME

Duration

60S

The maximum amount of time that a connection should be allowed to remain open, regardless of usage frequency.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_APACHE_CONNECTION_TIME_TO_LIVE

Duration

The maximum number of connections allowed in the connection pool. Each built HTTP client has its own private connection pool.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_APACHE_MAX_CONNECTIONS

int

50

Whether the client should send an HTTP expect-continue handshake before each request.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_APACHE_EXPECT_CONTINUE_ENABLED

boolean

true

Whether the idle connections in the connection pool should be closed asynchronously. When enabled, connections left idling for longer than quarkus..sync-client.connection-max-idle-time will be closed. This will not close connections currently in use.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_APACHE_USE_IDLE_CONNECTION_REAPER

boolean

true

Configure whether to enable or disable TCP KeepAlive.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_APACHE_TCP_KEEP_ALIVE

boolean

false

Enable HTTP proxy

Environment variable: QUARKUS_SQS_SYNC_CLIENT_APACHE_PROXY_ENABLED

boolean

false

The endpoint of the proxy server that the SDK should connect through. Currently, the endpoint is limited to a host and port. Any other URI components will result in an exception being raised.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_APACHE_PROXY_ENDPOINT

URI

The username to use when connecting through a proxy.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_APACHE_PROXY_USERNAME

string

The password to use when connecting through a proxy.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_APACHE_PROXY_PASSWORD

string

For NTLM proxies - the Windows domain name to use when authenticating with the proxy.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_APACHE_PROXY_NTLM_DOMAIN

string

For NTLM proxies - the Windows workstation name to use when authenticating with the proxy.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_APACHE_PROXY_NTLM_WORKSTATION

string

Whether to attempt to authenticate preemptively against the proxy server using basic authentication.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_APACHE_PROXY_PREEMPTIVE_BASIC_AUTHENTICATION_ENABLED

boolean

The hosts that the client is allowed to access without going through the proxy.

Environment variable: QUARKUS_SQS_SYNC_CLIENT_APACHE_PROXY_NON_PROXY_HOSTS

list of string

Netty HTTP transport configurations

Type

Default

The maximum number of allowed concurrent requests. For HTTP/1.1 this is the same as max connections. For HTTP/2 the number of connections that will be used depends on the max streams allowed per connection.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_MAX_CONCURRENCY

int

50

The maximum number of pending acquires allowed. Once this exceeds, acquire tries will be failed.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_MAX_PENDING_CONNECTION_ACQUIRES

int

10000

The amount of time to wait for a read on a socket before an exception is thrown. Specify 0 to disable.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_READ_TIMEOUT

Duration

30S

The amount of time to wait for a write on a socket before an exception is thrown. Specify 0 to disable.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_WRITE_TIMEOUT

Duration

30S

The amount of time to wait when initially establishing a connection before giving up and timing out.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_CONNECTION_TIMEOUT

Duration

10S

The amount of time to wait when acquiring a connection from the pool before giving up and timing out.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_CONNECTION_ACQUISITION_TIMEOUT

Duration

2S

The maximum amount of time that a connection should be allowed to remain open, regardless of usage frequency.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_CONNECTION_TIME_TO_LIVE

Duration

The maximum amount of time that a connection should be allowed to remain open while idle. Currently has no effect if quarkus..async-client.use-idle-connection-reaper is false.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_CONNECTION_MAX_IDLE_TIME

Duration

5S

Whether the idle connections in the connection pool should be closed. When enabled, connections left idling for longer than quarkus..async-client.connection-max-idle-time will be closed. This will not close connections currently in use.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_USE_IDLE_CONNECTION_REAPER

boolean

true

Configure whether to enable or disable TCP KeepAlive.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_TCP_KEEP_ALIVE

boolean

false

The HTTP protocol to use.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_PROTOCOL

http1-1, http2

http1-1

The SSL Provider to be used in the Netty client. Default is OPENSSL if available, JDK otherwise.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_SSL_PROVIDER

jdk, openssl, openssl-refcnt

The maximum number of concurrent streams for an HTTP/2 connection. This setting is only respected when the HTTP/2 protocol is used.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_HTTP2_MAX_STREAMS

long

4294967295

The initial window size for an HTTP/2 stream. This setting is only respected when the HTTP/2 protocol is used.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_HTTP2_INITIAL_WINDOW_SIZE

int

1048576

Sets the period that the Netty client will send PING frames to the remote endpoint to check the health of the connection. To disable this feature, set a duration of 0. This setting is only respected when the HTTP/2 protocol is used.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_HTTP2_HEALTH_CHECK_PING_PERIOD

Duration

5

Enable HTTP proxy.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_PROXY_ENABLED

boolean

false

The endpoint of the proxy server that the SDK should connect through. Currently, the endpoint is limited to a host and port. Any other URI components will result in an exception being raised.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_PROXY_ENDPOINT

URI

The hosts that the client is allowed to access without going through the proxy.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_PROXY_NON_PROXY_HOSTS

list of string

TLS key managers provider type.

Available providers:

  • none - Use this provider if you don’t want the client to present any certificates to the remote TLS host.

  • system-property - Provider checks the standard javax.net.ssl.keyStore, javax.net.ssl.keyStorePassword, and javax.net.ssl.keyStoreType properties defined by the JSSE.

  • file-store - Provider that loads the key store from a file.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_TLS_KEY_MANAGERS_PROVIDER_TYPE

none, system-property, file-store

system-property

Path to the key store.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_TLS_KEY_MANAGERS_PROVIDER_FILE_STORE_PATH

path

Key store type. See the KeyStore section in the https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#KeyStore[Java Cryptography Architecture Standard Algorithm Name Documentation] for information about standard keystore types.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_TLS_KEY_MANAGERS_PROVIDER_FILE_STORE_TYPE

string

Key store password

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_TLS_KEY_MANAGERS_PROVIDER_FILE_STORE_PASSWORD

string

TLS trust managers provider type.

Available providers:

  • trust-all - Use this provider to disable the validation of servers certificates and therefore trust all server certificates.

  • system-property - Provider checks the standard javax.net.ssl.keyStore, javax.net.ssl.keyStorePassword, and javax.net.ssl.keyStoreType properties defined by the JSSE.

  • file-store - Provider that loads the key store from a file.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_TLS_TRUST_MANAGERS_PROVIDER_TYPE

trust-all, system-property, file-store

system-property

Path to the key store.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_TLS_TRUST_MANAGERS_PROVIDER_FILE_STORE_PATH

path

Key store type. See the KeyStore section in the https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#KeyStore[Java Cryptography Architecture Standard Algorithm Name Documentation] for information about standard keystore types.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_TLS_TRUST_MANAGERS_PROVIDER_FILE_STORE_TYPE

string

Key store password

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_TLS_TRUST_MANAGERS_PROVIDER_FILE_STORE_PASSWORD

string

Enable the custom configuration of the Netty event loop group.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_EVENT_LOOP_OVERRIDE

boolean

false

Number of threads to use for the event loop group. If not set, the default Netty thread count is used (which is double the number of available processors unless the io.netty.eventLoopThreads system property is set.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_EVENT_LOOP_NUMBER_OF_THREADS

int

The thread name prefix for threads created by this thread factory used by event loop group. The prefix will be appended with a number unique to the thread factory and a number unique to the thread. If not specified it defaults to aws-java-sdk-NettyEventLoop

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_EVENT_LOOP_THREAD_NAME_PREFIX

string

Whether the default thread pool should be used to complete the futures returned from the HTTP client request. When disabled, futures will be completed on the Netty event loop thread.

Environment variable: QUARKUS_SQS_ASYNC_CLIENT_ADVANCED_USE_FUTURE_COMPLETION_THREAD_POOL

boolean

true

About the Duration format

The format for durations uses the standard java.time.Duration format. You can learn more about it in the Duration#parse() javadoc.

You can also provide duration values starting with a number. In this case, if the value consists only of a number, the converter treats the value as seconds. Otherwise, PT is implicitly prepended to the value to obtain a standard java.time.Duration format.

About the MemorySize format

A size configuration option recognises string in this format (shown as a regular expression): [0-9]+[KkMmGgTtPpEeZzYy]?. If no suffix is given, assume bytes.